

GENIUS VOTES PREDICTOR

EECS349 Machine Learning Final Report

Gabe Rojas-Westall: ​Conducted all​ ​data collection and dataset creation from Genius Client
Chaitra Subramaniam:​ Tested and analyzed results of all regression and classification models,
created the website
Michael Shane-Smith: ​Tested and analyzed results of nearest neighbor model, performed
feature engineering on dataset, and modified target output variable for classification task

Task
The goal of our project is to find the best regression task to predict the total number of votes
(upvotes minus downvotes) that an annotation receives on ​Genius.com based on attributes
such as number of followers, length of the referent and number of contributors. Each annotation
is linked to a referent or a specific chunk of text in the song so it provides really detailed
analysis. Additionally, we wanted to find the best classification task that would help us classify
the annotation as good or bad (depending on total number of votes).

As users, it would be helpful to know the number of upvotes we would get on an
annotation post to and see whether we are actually improving it or not. If this machine learning
project is applied, we can build a simple application where users type in their annotation and
they get a response saying “Yes, good post - it will increase votes by x” or “No - give it another
shot”. It will help improve users annotation skills or improve overall usability of this website.

Dataset
We wrote python scripts to make requests to the Genius’ API, clean the data, account for
missing attributes, and wrote it to a csv file using pandas. In order to limit the data we
requested, we limited our search to the US top 10 rap artists (from Billboard/Apple charts). Our
scripts made a request to get the top 30 songs from each artist that we chose, where each song
has a different number of referents, giving us a total N = 2752 referents. We have 19 different
attributes per referent, some of which include number of comments, number of contributors, and
length of referent. Our target variable is stored as total votes (upvotes - downvotes). For our
classification tasks, we converted the total votes target to Good or Bad depending on whether
the votes for a specific annotation were higher than the median number of total votes or not.
Once we got a dataset, we split it 70/30 (a standard convention) and are storing this testing data
for later use. Among the remaining development data, we used 10 fold cross validation on our
training data to build our model.

Initial Data Analysis
In Image 1 (Appendix), our total votes distribution is right skewed so we could try to make it
more uniform by taking the log of the total votes. From our correlation heat map (Image 2), the
red colors means that the features are less correlated as the coefficient is closer to 0. If we look
at simply the last row or last column, we can see that all the variables have very little
relationship (low correlation) with total votes on first glance since they’re all purple so one
predictor variable may not be driving the relationship necessarily. Also, most of the chart is dark
indicating that there is little correlation within the predictor variables themselves. This is a good
thing as it shows little multicollinearity indicating that this is not too much of a serious problem in
our analysis that might might skew the validity of our results.

Evaluation Metrics: What does “best” mean?
For the regression task, the evaluation metric we chose to focus on was the Pearson correlation
coefficient. Primarily, the coefficient can tell you the strength of the relationship between our
features and the total votes. The closer that they are to +1 or -1, the stronger the model is is and

https://genius.com/

if it is closer to 0, it means there is an extremely weak relationship. The sign of the coefficient
can also give us intuition on whether the relationship is positive or negative as well.

For the classification task, we are using accuracy as our primary evaluation metric. we
used accuracy to tell us how many our model classified right (as Good or Bad) out of the total.
Accuracy ranges from 0 - 100% and a higher accuracy could imply a better model. At the same
time, we looked at root mean square error for both regression and classification to test how
much our fitted/predicted values differ from the observed values.

Part 1: Finding the Best Regression Model

Method
The first model that we tried was a multiple linear regression with Weka. Multiple linear
regression attempts to model the the relationship between two or more variables by fitting a
linear equation to the data in order to predict an independent variable.

For our linear regression models, we ran two attribute selection methods using Weka.
We tested both attribute selection methods, M5 and Greedy. The M5 method uses a separate
and conquer strategy where it builds numerous trees with each leaf linking to a multivariate
model. It then selects the attributes that result in the model with the highest Akaike coefficient
which measures “relative goodness of fit”. Then, we ran the same regression again but this time
with the greedy attribute selections method which tries all possible subsets of features and
chooses the one which minimizes mean squared errors. We kept in mind though that the greedy
selection method is not ideal as it is extremely time consuming and not an efficient selection
method. We also tried nearest neighbor and we get the output and the ground truth number of
votes and we calculate the same correlation coefficient so they become comparable. Finally, we
also built a model where the target output was logged to see if this lead to improvements.

We also performed statistical analysis after running the linear regression models and
chose the features that proved to be statistically significant (those whose coefficient p-value was
greater than 0.05, a standard statistical metric used for comparison). We then selected only the
top 10 features such as length of referent or number of verified contributors and reran our
regression model and the results are listed below:

RESULTS (Regression)

Model Correlation Coeff. (R^2) Root MSE

Linear Reg M5 0.82 106.3743

Linear Reg Greedy 0.83 106.3382

Linear Reg Selected Features 0.79 114.5845

Log Linear M5 0.85 0.4079

3-Nearest Neighbor 0.7941 76.0591

The best method for linear regression seems to be Linear Reg M5 with the logged output since
correlation coefficient is 0.03 higher than regular Linear reg with M5. M5 also performs almost
as well as the Greedy but is more time and computationally efficient. It also performs better than
the best nearest neighbor model we found (3-NN). The Root MSE’s seem high mostly because
the slightly abnormal data distributions of total votes were far apart so the errors were high.
Additionally, it is important to note that the selected features on their own gives a relatively high
correlation coefficient of 0.79 which might make more sense to use if your goal is to limit the
number of features in your dataset.

Part 2: Finding the Best Classification Model

Methods
We then chose to compare decision trees, logistic regression, and random forests. We first
calculated ZeroR to get a baseline accuracy of about 50%. We then used the Decision Tree J48
algorithm on Weka, turning pruning on to reduce overfitting. After that, we tried random forests
which can reduce overfitting and also reduce variance as it will not rely on the bad trees that
might perform badly on the training data. Finally, we chose to look at logistic regression
because they are simpler than decision trees as they work well with a single decision boundary
and are less likely to run into overfitting. We chose some important features visually from our
decision tree which got the highest information gain and interestingly they were almost the same
features we found statistically significant in the linear regression stats but including number of
followers was also significant in the decision tree so we ran a model with 10 features found
earlier plus this feature. All these models give us fast evaluation times which is crucial if we want
to develop an user based application where they can immediately get a prediction of whether
their annotation is good or bad. We also tested K - nearest neighbor but no model performed as
well as the results below.

RESULTS: Classification

Model Accuracy Root MSE

Zero R 49.12% 0.5008

Decision Tree (J48 with Pruning) 87.02% 0.3193

Random Forest 84.30% 0.3200

Logistic Regression 84.29% 0.3254

Decision Tree (Select Features) 82.67% 0.3605

Random Forest (Select Features) 80.63% 0.3665

Logistic Reg (Select Features) 84.92% 0.3412

Our goal was to achieve highest accuracy and lowest root mse which is why decision trees
seemed to work the best. They improve ZeroR baseline accuracy by 30-40% and don’t run into
too much of an overfitting problem and even perform better than logistic regression and random
forests. It is also good to note that our simplified model achieved pretty high accuracy of 83% for
decision trees, validating our feature selection process. This shows that if we wanted a simplistic
model as well, the best model for classification would be decision trees with only the selected
features used.

Conclusion

In conclusion, for our regression tasks, we would use Linear Regression with the M5 selection
method with the logged target output as this gives us the highest correlation coefficient and a
low mean squared error. For classification, we would want to use the Decision Tree J48 model
with pruning as this gives us the highest accuracy and lowest squared error. But in both cases,
a more simplified model with almost half the features performs almost as well indicating that if
our purpose was to find the most simple model, we could quite safely choose that model.

Limitations and Future Goals

Even though we achieved high performing models, there are many more methods we
can try. A huge focus of Genius is on lyrics but apart from looking at length of the comment/lyric,
we did not analyse sentiment or type of words used. We think it would’ve been really interesting
fix that likely using the bag of words method and assigning different values to different words for
both the lyrics and annotations. We could then look into what words or kind of words in an
annotation are associated with more votes given the lyrics of a song.

We were also proud that our feature selection lead to significant improvements but we
can still continue to narrow down our search using other methods such as other forms of
regressions such as polynomial, kernel, or local linear regression to find non linear fits of our
features on total votes. This can help us achieve a clear idea of what the real 5-6 driving
variables were instead of narrowing our 19 features only down to 11. We could also include
interaction terms of all the features as additional features to our regression models to see if this
would improve correlation as well.

Finally, we have developed models but we have not worked on adapting it to an
application for users yet. We hope to develop this as an application with an attractive front end
where users can plug in an annotation and immediately find how many votes they will get which
can even be an extension on the Genius page as well for convenience purposes.

Appendix

Image 1: Comparing Total Votes to Log Total Votes Distribution

Image 2: Correlation Heatmap

